Stellar parallax is the apparent shift of position ( parallax) of any nearby star (or other object) against the background of distant stars. By extension, it is a method for determining the distance to the star through trigonometry, the stellar parallax method. Created by the different orbital positions of Earth, the extremely small observed shift is largest at time intervals of about six months, when Earth arrives at opposite sides of the Sun in its orbit, giving a baseline (the shortest side of the triangle made by a star to be observed and two positions of Earth) distance of about two astronomical units between observations. The parallax itself is considered to be half of this maximum, about equivalent to the observational shift that would occur due to the different positions of Earth and the Sun, a baseline of one astronomical unit (AU).
Stellar parallax is so difficult to detect that its existence was the subject of much debate in astronomy for hundreds of years. Thomas Henderson, Friedrich Georg Wilhelm von Struve, and Friedrich Bessel made the first successful parallax measurements in 1832–1838, for the stars Alpha Centauri, Vega, and 61 Cygni.
James Bradley first tried to measure stellar parallaxes in 1729. The stellar movement proved too insignificant for his telescope, but he instead discovered the aberration of light Page 184. and the nutation of Earth's axis, and catalogued 3,222 stars.
Those three results, two of which were measured with the best instruments at the time (Fraunhofer great refractor used by Struve and Fraunhofer heliometer by Bessel) were the first ones in history to establish the reliable distance scale to the stars.
A large heliometer was installed at Kuffner Observatory (In Vienna) in 1896, and was used for measuring the distance to other stars by trigonometric parallax. By 1910 it had computed 16 parallax distances to other stars, out of only 108 total known to science at that time.
Being very difficult to measure, only about 60 stellar parallaxes had been obtained by the end of the 19th century, mostly by use of the filar micrometer. using astronomical photographic plates sped the process in the early 20th century. Automated plate-measuring machines CERN paper on plate measuring machine USNO StarScan and more sophisticated computer technology of the 1960s allowed more efficient compilation of . In the 1980s, charge-coupled devices (CCDs) replaced photographic plates and reduced optical uncertainties to one milliarcsecond.
Stellar parallax remains the standard for calibrating other measurement methods (see Cosmic distance ladder). Accurate calculations of distance based on stellar parallax require a measurement of the distance from Earth to the Sun, now known to exquisite accuracy based on radar reflection off the surfaces of planets..
The Hubble telescope WFC3 now has a precision of 20 to 40 microarcseconds, enabling reliable distance measurements up to for a small number of stars. This gives more accuracy to the cosmic distance ladder and improves the knowledge of distances in the Universe, based on the dimensions of the Earth's orbit.
As distances between the two points of observation are increased, the visual effect of the parallax is likewise rendered more visible. NASA's New Horizons performed the first interstellar parallax measurement on 22 April 2020, taking images of Proxima Centauri and Wolf 359 in conjunction with earth-based observatories. The relative proximity of the two stars combined with the 6.5 billion kilometer (about 43 AU) distance of the spacecraft from Earth yielded a discernible parallax of arcminutes, allowing the parallax to be seen visually without instrumentation.
The European Space Agency's Gaia mission, launched 19 December 2013, is expected to measure parallax angles to an accuracy of 10 micro for all moderately bright stars, thus mapping nearby stars (and potentially planets) up to a distance of tens of thousands of light-years from Earth. Data Release 2 in 2018 claims mean errors for the parallaxes of 15th magnitude and brighter stars of 20–40 microarcseconds.
The observed path is an ellipse: the projection of Earth's orbit around the Sun through S onto the distant background of non-moving stars. The farther S is removed from Earth's orbital axis, the greater the eccentricity of the path of S. The center of the ellipse corresponds to the point where S would be seen from the Sun: The plane of Earth's orbit is at an angle to a line from the Sun through S. The vertices v and v' of the elliptical projection of the path of S are projections of positions of Earth E and such that a line E- intersects the line Sun-S at a right angle; the triangle created by points E, and S is an isosceles triangle with the line Sun-S as its symmetry axis.
Any stars that did not move between observations are, for the purpose of the accuracy of the measurement, infinitely far away. This means that the distance of the movement of the Earth compared to the distance to these infinitely far away stars is, within the accuracy of the measurement, 0. Thus a line of sight from Earth's first position E to vertex v will be essentially the same as a line of sight from the Earth's second position to the same vertex v, and will therefore run parallel to it - impossible to depict convincingly in an image of limited size: Since line - is a transversal in the same (approximately Euclidean) plane as parallel lines E-v and -v, it follows that the corresponding angles of intersection of these parallel lines with this transversal are congruent: the angle θ between lines of sight E-v and - is equal to the angle θ between -v and -, which is the angle θ between observed positions of S in relation to its apparently unmoving stellar surroundings. The distance d from the Sun to S now follows from simple trigonometry:
tan(θ) = E-Sun / d,
so that d = E-Sun / tan(θ), where E-Sun is 1 AU. The more distant an object is, the smaller its parallax.
Stellar parallax measures are given in the tiny units of , or even in thousandths of arcseconds (milliarcseconds). The distance unit parsec is defined as the length of the Cathetus of a right triangle adjacent to the angle of one arcsecond at one vertex, where the other leg is 1 AU long. Because stellar parallaxes and distances all involve such Skinny triangle, a convenient trigonometric approximation can be used to convert parallaxes (in arcseconds) to distance (in parsecs). The approximate distance is simply the reciprocal of the parallax: For example, Proxima Centauri (the nearest star to Earth other than the Sun), whose parallax is 0.7685, is 1 / 0.7685 parsecs = distant.
The angles involved in these calculations are very small and thus difficult to measure. The nearest star to the Sun (and also the star with the largest parallax), Proxima Centauri, has a parallax of 0.7685 ± 0.0002 arcsec. This angle is approximately that subtended by an object 2 centimeters in diameter located 5.3 kilometers away.
However, an approximation of the distance error can be computed by
|
|